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Darpa’s Goal: Fly Boeing's UAV s

Our mission:
implement a Real-time Specification for Java compliant VM

Only other RTSJVM was an interpreter & proprietary

Target is avionics software for the Boeing/Insitu ScanEagle UAV
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A Configurable Open VM EAR'AR!

A clean-room implementation

Internal project goal:
open source framework for language runtime systems

A Java-in-Java VM
| 50KLoc of Java, | 5Kloc of C code

GNU classpath libraries + our own RTS] implementation
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Build Process

Bootstrapped under Hotspot

Configuration and partial evaluation

Generate an executable image (datatcode)

IR-spec + interpreter generation

Stage 1:

code, metadata
and data in
standard Java
format

Rewriting

-

Image serialization

Stage 2:

code and
metadata in
OvmlIR format

-

Stage 3:

data in Ovm
specific format

Loading

-

Stage 4:

complete Ovm
configuration

JVM-hosted

self-hosted
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Javaln)ava

O anecdotal evidence of lower bug rates

O same optimizing compiler for VM & user code

O fewer cross-language calls

public Oop updateReference(MovingGC oop) {

int sz = oop.getBluepgrint().getVariableSize(oop);

if (sz >= blockSize) {
movedBytes += sz;
VM Word off = VM Address.fromObject(oop).diff (heapBase);
int idx = off.asInt() >>> blockShift;
block.pin(idx);
return oop;

} else {
VM Address newLoc = getHeapMem(sz, false);
Mem.the().cpy(newLoc, VM Address.fromObject(oop), sz);
oop.markAsForwarded (newlLoc) ;
return newLoc.asOop();
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Ovm Configurations

execution engine aot / jit / interp
static analysis off /| CHA / RTA
fast locks on / off
memcop fast / bounded-latency
I/O system SIGIOSocketsPollingOther SelectSocketsPollingOther

( Profiling ) / SelectSocketsStallingFiles-
SIGIOSockectsStallingFilesPolling PollingOther
threading java / realtime / profiling pip / time preemptive
transactions on / off/ profile
object/mem models AllCopy:B-M-F-H MostlyCopyVVB:B-M-F-H
MostlyCopySplitRegions:B-Mf-F-H JMTk:B-M-J-H
MostlyCopyWB:B-Mf-F-H MostlyCopy:B-M-F-H

MostlyCopyRegions:B-M-F-H SimpleSemiSpace:B-M-F-H
MostlyCopyingRegions-B_ Mf_F H minimalMM-B_0M
MostlyCopyingSC-B M_F H minimalMM-B_M

minimalMM-B_ M | H
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Configuration mechanisms

@ Interfaces and inheritance are not sufficient
(we have 3371 classes and ~450 interfaces)

& AOP should be revisited
@ Component systems such as Jiazzi, Scala...

@ We rolled our own...
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Configuration mechanisms, example transactions:

@ Implementing a form of transactional memory in Ovm
takes about ~1200 lines code.

@ Changes to the sources of the VM, ~40 lines in 34
different places, e.g.:

void runThread (OVMThread t) throws PragmaNoPollcheck({

boolean aborting =
Transaction.the().preRunThreadHook(thisThread, t);

setCurrentThread(t);
Processor.getCurrentProcessor().run(t.getContext());

Transaction.the () .postRunThreadHook (aborting);
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boolean aborting =
Transaction.the() .preRunThreadHook (thisThread, t);

@ Generated C code

jboolean _stack 2 =
S3Transaction preRunThreadHook (e.roots->vals[97]),
_stack 0, _stack 1);

@ Stitcher specification

# Select an implementation of the transactional API described in the
# Preemptible Atomic Region paper. EmptyTransaction gives the

# default behavior. S3Transaction is the real thing.
s3.services.transactions.Transaction \

s3.services.transactions.S3Transaction
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Domains

@ Separation is necessary

@ one Executive and possibly multiple User domains

@ Each domain can have it's memory manager, scheduler,

class libraries, and even object model
@ opaque types
@ cross domain accesses are reflective

@ enforced by the type system --
requires Object not to be builtin

@ special handling of exceptions crossing boundaries
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GCC as a backend

& offload low-level optimizations

@ cross-platform portability

@ using C++ exceptions is suboptimal

@ inlining can lead to bloat and long compile times

@ No precise GC ... but working on it.
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Cooperative Scheduling

@ OS-independent

@ Priority inversion avoidance (PIP/PCE) supported in a
portable fashion and optimized by the compiler

@ but, we had to implement our own non-blocking 1/O

# 291 "./s3/util/queues/Queue.java”

static jboolean Queue isEmpty(queues Queue * ovm this) {
_pcO:;
if (CHECK EVENTS()) signalEvent();
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