OVM

lessons learned

Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka,
Krista Grothoff, Christian Grothoff, Andrey Madan, Gergana Markova, Jeremy Manson,

Krzystof Palacz, Jacques Thomas, Hiroshi Yamauchi
Purdue University

David Holmes
DLTeCH

DARPA Program Composition for Embedded Systems (PCES)
NSF/HDCP - Assured Software Composition for Real-Time Systems

PURDUE %

Ce %

Darpa’s Goal: Fly Boeing's UAV s

Our mission:
implement a Real-time Specification for Java compliant VM

Only other RTSJVM was an interpreter & proprietary

Target is avionics software for the Boeing/Insitu ScanEagle UAV

January 2006

A Configurable Open VM EAR'AR!

A clean-room implementation

Internal project goal:
open source framework for language runtime systems

A Java-in-Java VM
| 50KLoc of Java, | 5Kloc of C code

GNU classpath libraries + our own RTS] implementation

January 2006

Build Process

Bootstrapped under Hotspot

Configuration and partial evaluation

Generate an executable image (datatcode)

IR-spec + interpreter generation

Stage 1:

code, metadata
and data in
standard Java
format

Rewriting

-

Image serialization

Stage 2:

code and
metadata in
OvmlIR format

-

Stage 3:

data in Ovm
specific format

Loading

-

Stage 4:

complete Ovm
configuration

JVM-hosted

self-hosted

January 2006

Javaln)ava

O anecdotal evidence of lower bug rates

O same optimizing compiler for VM & user code

O fewer cross-language calls

public Oop updateReference(MovingGC oop) {

int sz = oop.getBluepgrint().getVariableSize(oop);

if (sz >= blockSize) {
movedBytes += sz;
VM Word off = VM Address.fromObject(oop).diff (heapBase);
int idx = off.asInt() >>> blockShift;
block.pin(idx);
return oop;

} else {
VM Address newLoc = getHeapMem(sz, false);
Mem.the().cpy(newLoc, VM Address.fromObject(oop), sz);
oop.markAsForwarded (newlLoc) ;
return newLoc.asOop();

January 2006

Ovm Configurations

execution engine aot / jit / interp
static analysis off /| CHA / RTA
fast locks on / off
memcop fast / bounded-latency
I/O system SIGIOSocketsPollingOther SelectSocketsPollingOther

(Profiling) / SelectSocketsStallingFiles-
SIGIOSockectsStallingFilesPolling PollingOther
threading java / realtime / profiling pip / time preemptive
transactions on / off/ profile
object/mem models AllCopy:B-M-F-H MostlyCopyVVB:B-M-F-H
MostlyCopySplitRegions:B-Mf-F-H JMTk:B-M-J-H
MostlyCopyWB:B-Mf-F-H MostlyCopy:B-M-F-H

MostlyCopyRegions:B-M-F-H SimpleSemiSpace:B-M-F-H
MostlyCopyingRegions-B_ Mf_F H minimalMM-B_0M
MostlyCopyingSC-B M_F H minimalMM-B_M

minimalMM-B_ M | H
January 2006

Configuration mechanisms

@ Interfaces and inheritance are not sufficient
(we have 3371 classes and ~450 interfaces)

& AOP should be revisited
@ Component systems such as Jiazzi, Scala...

@ We rolled our own...

January 2006

Configuration mechanisms, example transactions:

@ Implementing a form of transactional memory in Ovm
takes about ~1200 lines code.

@ Changes to the sources of the VM, ~40 lines in 34
different places, e.g.:

void runThread (OVMThread t) throws PragmaNoPollcheck({

boolean aborting =
Transaction.the().preRunThreadHook(thisThread, t);

setCurrentThread(t);
Processor.getCurrentProcessor().run(t.getContext());

Transaction.the () .postRunThreadHook (aborting);

January 2006

boolean aborting =
Transaction.the() .preRunThreadHook (thisThread, t);

@ Generated C code

jboolean _stack 2 =
S3Transaction preRunThreadHook (e.roots->vals[97]),
_stack 0, _stack 1);

@ Stitcher specification

Select an implementation of the transactional API described in the
Preemptible Atomic Region paper. EmptyTransaction gives the

default behavior. S3Transaction is the real thing.
s3.services.transactions.Transaction \

s3.services.transactions.S3Transaction

January 2006

Domains

@ Separation is necessary

@ one Executive and possibly multiple User domains

@ Each domain can have it's memory manager, scheduler,

class libraries, and even object model
@ opaque types
@ cross domain accesses are reflective

@ enforced by the type system --
requires Object not to be builtin

@ special handling of exceptions crossing boundaries

January 2006

GCC as a backend

& offload low-level optimizations

@ cross-platform portability

@ using C++ exceptions is suboptimal

@ inlining can lead to bloat and long compile times

@ No precise GC ... but working on it.

January 2006

Cooperative Scheduling

@ OS-independent

@ Priority inversion avoidance (PIP/PCE) supported in a
portable fashion and optimized by the compiler

@ but, we had to implement our own non-blocking 1/O

291 "./s3/util/queues/Queue.java”

static jboolean Queue isEmpty(queues Queue * ovm this) {
_pcO:;
if (CHECK EVENTS()) signalEvent();

January 2006

