
OVM
lessons learned

Jan Vitek
Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka,

Krista Grothoff, Christian Grothoff, Andrey Madan, Gergana Markova, Jeremy Manson,
Krzystof Palacz, Jacques Thomas, Hiroshi Yamauchi

Purdue University
David Holmes

DLTeCH

DARPA Program Composition for Embedded Systems (PCES)
NSF/HDCP - Assured Software Composition for Real-Time Systems

January 2006

Darpa’s Goal: Fly Boeing’s UAV
Our mission:
 implement a Real-time Specification for Java compliant VM

Only other RTSJVM was an interpreter & proprietary

Target is avionics software for the Boeing/Insitu ScanEagle UAV

Kestrel Institute, September 2005

PCES Capstone Demo

Ovm was used for the DARPA PCES Capstone Demo

The RTSJ deployed in the ScanEagle UAV to implement
route computation, threat deconfliction algorithms

In collaboration between the Boeing Corporation,
Purdue University, DLTech, UCI, WUSTL 3 An Avionics Mission-critical DRE Middleware Stack

We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.

Embedded Planet PowerPC 8260

Core at 300 MHz

256 Mb SDRAM

32 Mb FLASH

PC/104 mechanical sized

Embedded Linux

Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.

5

January 2006

A Configurable Open VM
A clean-room implementation

Internal project goal:
 open source framework for language runtime systems

A Java-in-Java VM

150KLoc of Java, 15Kloc of C code

GNU classpath libraries + our own RTSJ implementation

January 2006

Build Process
Bootstrapped under Hotspot

Configuration and partial evaluation

Generate an executable image (data+code)

IR-spec + interpreter generation

Stage 1:

code, metadata
and data in

standard Java
format

JVM-hosted self-hosted

Stage 2:

code and
metadata in

OvmIR format

Stage 3:

data in Ovm
specific format

Stage 4:

complete Ovm
configuration

Rewriting Image serialization Loading

January 2006

Lessons
JavaInJava

 anecdotal evidence of lower bug rates
 same optimizing compiler for VM & user code
 fewer cross-language calls

public Oop updateReference(MovingGC oop) {
int sz = oop.getBluepqrint().getVariableSize(oop);
if (sz >= blockSize) {
 movedBytes += sz;
 VM_Word off = VM_Address.fromObject(oop).diff(heapBase);
 int idx = off.asInt() >>> blockShift;
 block.pin(idx);
 return oop;
} else {
 VM_Address newLoc = getHeapMem(sz, false);
 Mem.the().cpy(newLoc, VM_Address.fromObject(oop), sz);
 oop.markAsForwarded(newLoc);
 return newLoc.asOop();
}

January 2006

Ovm Configurations
execution engine

static analysis

fast locks

memcopy

I/O system

threading

transactions

object/mem models

aot / jit / interp

off / CHA / RTA

on / off

fast / bounded-latency

SIGIOSocketsPollingOther

 (Profiling) /

SIGIOSockectsStallingFilesPolling

java / realtime / profiling

on / off/ profile

AllCopy:B-M-F-H

MostlyCopySplitRegions:B-Mf-F-H

MostlyCopyWB:B-Mf-F-H

MostlyCopyRegions:B-M-F-H

MostlyCopyingRegions-B_Mf_F_H

MostlyCopyingSC-B_M_F_H

minimalMM-B_M_J_H

MostlyCopyingSplitRegions-

SelectSocketsPollingOther

 SelectSocketsStallingFiles-

PollingOther

pip / time preemptive

MostlyCopyWB:B-M-F-H

JMTk:B-M-J-H

MostlyCopy:B-M-F-H

SimpleSemiSpace:B-M-F-H

minimalMM-B_0M

minimalMM-B_M

January 2006

Lessons
Configuration mechanisms

 Interfaces and inheritance are not sufficient
 (we have 3371 classes and ~450 interfaces)

 AOP should be revisited

 Component systems such as Jiazzi, Scala...

 We rolled our own...

January 2006

Lessons
Configuration mechanisms, example transactions:

 Implementing a form of transactional memory in Ovm
takes about ~1200 lines code.

 Changes to the sources of the VM, ~40 lines in 34
different places, e.g.:

void runThread(OVMThread t) throws PragmaNoPollcheck{

boolean aborting =
 Transaction.the().preRunThreadHook(thisThread, t);

 setCurrentThread(t);

 Processor.getCurrentProcessor().run(t.getContext());

 ...

 Transaction.the().postRunThreadHook(aborting);

January 2006

Lessons
boolean aborting =
 Transaction.the().preRunThreadHook(thisThread, t);

 Generated C code

jboolean _stack_2 =
 S3Transaction_preRunThreadHook(e.roots->vals[97]),
 _stack_0, _stack_1);

 Stitcher specification

Select an implementation of the transactional API described in the

Preemptible Atomic Region paper. EmptyTransaction gives the

default behavior. S3Transaction is the real thing.

s3.services.transactions.Transaction \

 s3.services.transactions.S3Transaction

January 2006

Lessons

Domains
 Separation is necessary

 one Executive and possibly multiple User domains

 Each domain can have it’s memory manager, scheduler,
class libraries, and even object model

 opaque types

 cross domain accesses are reflective

 enforced by the type system --
 requires Object not to be builtin

 special handling of exceptions crossing boundaries

January 2006

Lessons
GCC as a backend

 offload low-level optimizations

 cross-platform portability

 using C++ exceptions is suboptimal

 inlining can lead to bloat and long compile times

 No precise GC ... but working on it.

January 2006

Lessons
Cooperative Scheduling

 OS-independent
 Priority inversion avoidance (PIP/PCE) supported in a
portable fashion and optimized by the compiler
 but, we had to implement our own non-blocking I/O

291 "./s3/util/queues/Queue.java"
static jboolean Queue_isEmpty(queues_Queue * ovm_this){
 _pc0:;
 if (CHECK_EVENTS()) signalEvent();

