Ramblings on Object Models

David Grove
|IBM Research
Jkes RVM project

January 11, 2006

Overview

e \WWhat isthe object model?
— VM’sinternal, universal representation of objects
— Cross-cuts amost every component of the VM

e |mpact on Space
— Per-object overhead

e Impact on Time

— AcCcess costs
— Cache locality (related to space cost)

Goals for an Object Model

e Perform well for common case
— Lotsof ways to trade time/space
— What exactly isthe “common” case you are optimizing for?
— JIT generatesinline code for many (most) basic operations
— Space efficient object models have less redundancy (impacts debugging)
e Desirable to support multiple object models
— Rapid prototyping
— Tune object model to GC and other aspects of system
— “Common case” may differ depending on platform/application
— Supporting radically different object models may not actually be desirable

e Engineering, not rocket science (mostly...)

Topicsfor Today’s Rambling

o Object header
* Dynamic Typechecking & Dispatching

Abstract Java Object Model

class Object {
Class getClass(); | /
Int hashCode();
void wait();
void wait(long);

void wait(long,int);
void notify();
void notifyAll();

Object clone();
boolean equals();

Profiling

Compression Techniques. Hashing
(Agesen 97, Bacon et al.” 98)

e Observations
— Objects usually die before they move
— Objects usually are not hashed
— The address of an object is agood hash code (or seed)

o Use 3-state encoding
— unhashed, hashed, hashed& moved
— In states unhashed and hashed hash code is address
— On GC, hashed object has address copied to new object
— In state hashed& moved, hash code is retrieved from end

Compression Techniques: Locking
(Bacon et al.’ 98)

e Observations
— Most objects are not |ocked
— Nesting of locks is shallow
— Most locked objects are not contended

* Encode as 24-bit thin lock
 Inthin case: fat bit=0, owning thread, nest level
 |nfat case, fat bit=1, index of inflated lock structure
e |nusual thin case, only 1 compare& swap needed

« Numerous variants and improvements

Compression Techniques. Locking
(Bacon et al.’ 02)

e Observations
— Most objects are not locked
— Most locked objects have synchronized methods

e Treat lock asan implicit field

— Defined by first synchronized method in
hierarchy

— synchronized methods will know the offset
— synchronized blocks may need to ook up offset

Original Sun Object Model (' 95)

Handle Space Lock Table

Object Space

IBM JVM without Handles (' 97)

|
Object Space : Lock Table

IBM JVM with Thin Locks (’ 98)
Jikes RVM default

Object Space

Jkes RVM 1-Word Masked (no lock)

"

DATA

Lock Table

Jkes RVM Single-Word Masked (with lock)

"

class

DATA

DATA

Object Header Summary

e Object headers vary from 1-3+ words
« Many approaches to header compression

 |nvariants can be quite subtle
— Whose updating which bits? When? Atomic?

Dynamic Type Checking

Explicit type tests (instanceof)
b instanceof A;

Down casts (checkcast)
(A) b;

| nterface method invocation (invokeinterface)
| i =Db; //l aninterface type
1.foo();

Exception delivery (athrow)
try{..}cach(Aa){...}

Object array stores (aastore)
DeclaredType|[] X =
X[3] = b;

Superclass Identifier Display

Dynamic type check:
I rl, TIBoffset(b)

0 I r1, SIDoffset(r1)
N 5 | 11, A_depth<<i(rl)
T Truck | 90 cmpirl, A_id
Vehicle |88 bne NoMatch

Durable Good | 17
Object | 1 Dynamic type check:
I rl, TIBoffset(b)

‘ I rl, SiDoffset(rl)
| I r2, lengthOffset(rl)
cmpi r2, A_depth

bge NoMatch
3 deptII [rl, A_depth<<1(rl)
9| typeid cmpirl, A_id
B VM_Type SID bne NoMatch
for for for
Truck Truck Truck Truck

Each type has adepth and atype id

SID for atypeisan array of shorts
Maps superclass depth to superclass type id
Padded to a minimum depth with invalid ids

Method Dispatch

* Invokevirtual
— Single inheritance, statically typed
— VFTs (Virtua Function Tables) most common
— PICs (Polymorphic Inline Caches) also used
e Invokenterface
— dynamic type check
— Effectively multiple inheritance
— Large number of schemes

Virtual Method Dispatch

= Single inheritance: virtual method dispatch tables

object reference Virtual Method Table

Executable
Code

t1 = |d base of VMT
12 = |d [t1 + offset for A.foo]
call [t2]

invokevirtual A.fooon O |m>

Interface Table Dispatch: Search Variant

= Variant 2: Packed dictionary of itables [eg. Fitzgerald et al. 99]

Itable Dictionary for Itable for class C,

object reference

- /"

class C

interface I

e

Executable

One entry for each
interface C implements

Code

invokeinterface I.foo on O

>

t1 = |d base of Itable dictionary

12 = find offset of interface I for class C
t3 = Id [11 +12]

t4 = |d [+3 + offset for method I.foo]

call [14]

m Drawback: rneed to find offset 12 of interface I for class €
e Sometimes, compiler can determine 2 statically (should virtualize call)
e If not, need dispatch time search (cache, binary or linear) to find 12

Interface Table Dispatch: Direct Variant

= Variant 1: Array of itables [Krall & Grafi 97]

Itable Dictionary for Itable for class C,
class C interface T

e

object reference

Executable
Code

/

One entry for each
interface loaded

t1 = |d base of Itable dictionary

invokeinterface I.foo on O :> 12 = Id [t1 + offset for interface I]
t3 = Id [t2 + offset for method I.foo]
call [+3]

= Drawbacks compared to virtual call
e One extra indirection on dispatch
e Space overhead of Itable dictionaries and ITables

Selector Index Tables

= Tnterface dispatch has same runtime cost as virtual dispatch

object reference Selector Index Table

Executable
Code

t1 = |d base of SIT
12 = Id [11 + of fset for I.foo]
call [t2]

invokeinterface I.fooon O |mm)>

m Selector Index Table

¢ One entry for every interface method signature loaded
e Very space-inefficient

Selector Index Table Coloring

= Note that Selector Index Table for a class is sparse
e A class only implements some interfaces
e [Dixon et al. 89]:color interface methods for each class and pack densely

Selector Index Table

object reference

Executable
Code

= Coloring problems for Java:
e Must know all the classes a priors

Jikes RVM IMT Solution

= Fixed-size selector-index tables (Interface Method Table (IMT))
= Map interface method to known IMT slot with hash function

Fixed-Size Selector

object reference Index Table (IMT)

Executable
Code

= Don't need to know interfaces a priori
= Common case: interface dispatch almost same sequence as virtual dispatch
= Potential drawback: conflicts in mapping to IMT

Jikes RVM IMT Solution

Fixed-Size Selector

object reference Index Table (IMT)

Conflict

Resolution

Code
Executable Executable
Code Code

m Conflict resolution stub resolves conflict

= Hidden parameter identifies proper method to dispatch
= Conflict resolution stub generated when conflict detected
i.e. during interface loading
= Extra instruction in caller to set up hidden parameter
= Extra space for IMT and conflict resolution code (if required)

Summary of Typechecking &
Dispatch

L ots of options, prior + future research

VM core, classloading, JI'T

— Act In concert to maintain invariants,

— Very specific knowledge needed by (some portion of)
all subsystems

Memory model can matter (PPC vs. x86)
Operations are so common, you have to do avery
good job

Must evaluate on very large benchmarks (jvm98,
Jbb too easy)

Discussion

e Object model cross-cuts, but can be encapsulated

* Object model evolution isinevitable, but often
guite painful (even in well-designed systems)

e “Common” model of header + data won't handle
everything you might want to do
— Arraylets
— Split objects
— Handles
— Highly compressed pointers & values

